Качество клейковины — Формирования белкового комплекса клейковины

Концепция формирования белкового комплекса клейковины пшеницы

В конце XX столетия в Сибирском институте физиологии и биохимии растений выполнено исследование, выдвинувшее концепцию формирования белкового комплекса клейковины пшеницы, основанной на регуляторной функции ферментов тиол-дисульфидного обмена. Показано, что в развивающихся зерновках функционирует специализированная система ферментов, катализирующая образование дисульфидных связей в белках (тиол: кислородредуктаза), их диссоциацию (тиол: протеин-дисульфидизомераза).

В тиолдисульфидном обмене клейковины принимает участие трипептид глютатион.

Взаимопревращение окисленной и восстановленной форм глютатиона катализируется группой ферментов приведенных выше. Глютатион оказывает большое влияние на активность ферментов, особенно тех, действие которых связано с превращениями белков. Окисленный глютатион изображают сокращенно Г–S–S–Г, восстановленный –Г–SH.

Свойства белков созревающего и прорастающего зерна связаны с содержанием –S–S– связей и –SH-групп. При хорошем качестве клейковины соотношение Г–S–S–Г/Г–SH высокое. При прорастании зерна дисульфидные связи распадаются с одновременным увеличением сульфгидрильных групп и ослаблением качества клейковины.

Разработан способ ферментативного улучшения хлебопекарного качества пшеничной муки.

Берут небольшое количество растительного масла и небольшое количество соевой муки, особенно богатой ферментом липоксигеназой, затем энергично размешивают эту смесь и вносят в пшеничное тесто. Липоксигеназа окисляет кислородом воздуха ненасыщенные жирные кислоты. При этом кислород присоединяется к двойным связям жирных кислот, образуя их перекиси (пероксиды), обладающие очень сильным окисляющим действием. Гидроперекиси жирных кислот укрепляют клейковину муки, улучшают ее физические свойства.

Качество клейковины

На качество клейковины большое влияние оказывают вещества, содержащие сульфгидрильные группы, – SH. Эти вещества при добавлении их в небольшом количестве к муке или к тесту резко ухудшают качество клейковины и теста, вызывают их расплывание и разжижение. Среди соединений, содержащих группу –SH, нужно особенно отметить уже рассмотренные ранее аминокислоты цистеин и глютатион. Глютатион представляет особый интерес, так как содержится в большом количестве в зародыше пшеничного зерна (0,45%), а также в дрожжах (особенно старых). Глютатион оказывает на клейковину сильное разжижающее действие – клейковина и тесто расплываются и ослабевают. Отрицательное влияние на клейковину оказывает только восстановленная форма глютатиона (Г – SH).

Качество клейковины зависит также от действия протеолитических ферментов. Под их влиянием клейковина теряет свои первоначальные физические свойства, разжижается и иногда становится неотмываемой. Это явление наблюдается у муки, полученной из зерна, пораженного клопами-черепашками. Из такой муки нельзя отмыть клейковину потому, что клопы-черепашки, накалывая созревшее зерно, впускают в него слюну, содержащую активный протеолитический фермент. Внесенный в зерно протеолитический фермент сохраняется в нем, фермент начинает действовать, разрушая белки клейковины в приготовленном из такой муки тесте. В зернах злаковых и семенах бобовых культур содержатся белки-ингибиторы, способные соединяться с протеолитическими ферментами, снижая их активность, что также может сказываться на качестве клейковины.

Новые формы белковой пищи

Новые формы белковой пищи – это продукты питания, получаемые на основе различных белковых фракций продовольственного сырья с применением научно обоснованных способов переработки и имеющие определенный химический состав, структуру и свойства, включая биологическую ценность.

Объективной количественной оценкой создания и развития отрасли производства растительных белковых продуктов (фракций) является наличие сельскохозяйственного сырья, высокопроизводительного оборудования (экстрактов, сепаратов, центрифуг, сушилок и т.д.) и конкурентоспособных технологий. К потенциальным сырьевым источникам относят: зернобобовые (соя, горох, чечевица, люпин, фасоль, нут); хлебные и крупяные культуры (пшеница, тритикале, рожь, овес, ячмень, кукуруза) и побочные продукты их переработки (отруби, сечка, мучка, зародыш); масличные (подсолнечник, лен, рапс, кунжут); псевдозлаковые (амарант); овощи и бахчевые (картофель, тыква); вегетативная масса растений (люцерна, клевер, люпин, сахарная свекла, зеленый табак); продукты переработки фруктов и ягод (косточки абрикоса, сливы, вишни, кизила, винограда и т.д.); кедровые и другие виды орехов. Из известных растительных источников пищевого белка наибольшее значение имеют семена сои.

На современном рынке пищевых ингредиентов соевые белки представлены изолятами, концентратами, текстурированными соевыми продуктами и различными видами соевой муки или крупки. Кроме того, существует большой ассортимент традиционных продуктов из цельных семян сои, которые веками использовались в странах Азии и интерес к которым в последнее время увеличивается с ростом информации о пользе этих продуктов для здоровья и с появлением новых пищевых технологий, позволяющих получать соевые продукты с вкусовыми характеристиками, отвечающими требованиям современного западного потребителя.

Соевую муку производят в значительном количестве и используют для разных целей: получения соевого белка, блинной муки, в хлебопечении и т.д.

Ее вырабатывают из семян сои, соевого жмыха и соевого шрота. Пищевой соевый жмых получают при отжиме масла из сои путем прессования, соевый шрот – при выработке масла путем экстрагирования.

Соевую муку в зависимости от сырья, из которого она изготовлена, подразделяют на виды: необезжиренная, ее вырабатывают только дезодорированную, обработанную паром для удаления пахучих веществ зерна; полуобезжиренная, получаемая из соевого жмыха; обезжиренная, получаемая из соевого шрота. Последние два вида в связи с предварительной тепловой обработкой сырья также бывают только дезодорированными.

Разные виды соевой муки отличаются по химическому составу, главным образом по содержанию жира и белка.

Химический состав соевой муки

 Вид мукиВид мукиВид муки
Содержание в 100 г продуктанеобезжиреннаяполуобезжиреннаяобезжиренная
Вода, г9,09,09,0
Белки, г36,543,048,9
Жиры, г18,69,51,0
Моно- и дисахариды, г5,05,66,2
Крахмал, г10,011,115,5
Клетчатка, г2,62,92,8
Зола, г4,74,95,3
Ссылка на основную публикацию