Амилазы, Основные сведения о Амилазах: α-амилаза, β-амилаза

Амилазы, ферменты амилолитического комплекса, α-амилаза, β-амилаза

Основной формой запасных углеводов в семенах и клубнях растений является крахмал. Ферментативные превращения крахмала лежат в основе многих пищевых технологий. Поэтому ферменты амилолитического комплекса растительного, животного и микробного происхождения интенсивно изучаются со времени их открытия Кирхгофом в 1814 г. и до настоящего времени.

Группа ферментов, гидролизующих крахмал (амилолитических), включает: α-амилазу, β-амилазу, глюкоамилазу, α-глюкозидазу, изоамилазу, пуллуланазу. α-Амилаза (α-1,4-глюкан-4-глюканогидролаза, К.Ф.3.2.1.1) является ферментом эндо-типа, гидролизующим α-1,4-гликозидные связи в крахмальных полисахаридах и гликогене.

α-Амилазы обнаружены у животных (в слюне и поджелудочной железе), в растениях (проросшее зерно пшеницы, ржи, ячменя), они вырабатываются плесневыми грибами и бактериями.

Действие α-амилазы, Альфа амилаза

Действие α-амилазы на крахмал характеризуется быстрым снижением вязкости раствора и молекулярной массы олигосахаридов. Фермент имеет выраженное сродство к гликозидным связям, удаленным от конца молекулы. Расщепление гликозидной связи происходит между атомом кислорода и С1-атомом глюкозного остатка. Атака субстрата носит случайный характер и может быть как единичной, так и множественной, когда от субстрата последовательно отщепляется нескольку фрагментов. Гидролизу подвергаются олигосахариды, содержащие менее 3 глюкозных единиц. При гидролизе амилопектина в продуктах гидролиза, наряду с олигосахаридами линейного строения, присутствуют α-декстрины, представляющие собой не затронутые реакцией разветвленные участки амилопектиновых молекул.

Процесс расщепления крахмала хорошо прослеживается по реакции продуктов с йодом. Синяя окраска характерна для амилодекстринов, содержащих не менее 45 глюкозных единиц (Г45), пурпурная – для декстринов Г35-Г40, красная – для эритродекстринов Г20-Г30, коричневая – для декстринов Г12-Г15. Ахроодекстрины, не окрашивающиеся йодом, имеют величину не более 12 глюкозных единиц. Образование ахроодекстринов завершает первую стадию гидролиза крахмала. Накопление низкомолекулярных сахаров происходит во второй, стационарной, медленнотекущей стадии.

Различные α-амилазы при длительном воздействии на крахмал расщепляют его на смесь олигосахаридов с преобладанием характерных сахаров. Конечный продукт расщепления крахмала – глюкоза образуется в незначительном количестве.

Две Группы Альфа-амилазы

α-Амилазы условно делят на две группы: разжижающие и осахаривающие. К первым относят ферменты, расщепляющие в растворимом крахмале или амилозе не более 40% гликозидных связей, ко вторым – расщепляющие до 60%. Так, осахаривающая амилаза термофильного актиномицета гидролизует амилозу с образованием 77% мальтозы, 17% мальтотриозы, 3,5% мальтопентаозы и 2,5% глюкозы, что соответствует степени расщепления около 47% гликозидных связей. При действии бактериальных амилаз разжижающего типа на растворимый крахмал предельная степень расщепления гликозидных связей составляет от 16 до 30%, при этом в качестве основного продукта гидролиза может обнаруживаться мальтогексаоза, мальтопентаоза или мальтоза. Бактериальные амилазы осахаривающего типа гидролизуют крахмал с образованием до 70% мальтозы и глюкозы. Амилаза микроскопических грибов относится к осахаривающему типу, при гидролизе крахмала образуется до 87% мальтозы и глюкозы.

Образование продуктов расщепления крахмала под действием α-амилазы идет как по механизму гидролитической реакции, так и по механизму трансгликозилирования. Способность к трансгликозилированию более выражена у амилаз осахаривающего типа. В процессе трансгликозилирования образуются олигосахариды, являющиеся хорошим субстратом для реакции гидролиза, что способствует более глубокому расщеплению крахмала, повышению концентрации глюкозы и мальтозы в продуктах реакции.

Альфа-Амилазы очень широко распространены в органическом мире

α-Амилазы (Альфа-Амилазы) очень широко распространены в органическом мире. Их находят у низших и высших животных, растений, микроорганизмов. Наибольшее практическое применение имеют α-амилазы бактерий и микромицетов.

Микроорганизмы продуцируют α-амилазы с различными физико-химическими свойствами. Молекулярная масса фермента из различных источников составляет 16-76 кДа. Многие амилазы содержат кальций, в количестве от 1 до 30 грамм-атомов на моль белка. Кальций существен для проявления активности и стабильности амилаз. Наличие кальция более характерно для амилаз разжижающего типа.

Некоторые грибные амилазы включают углеводный компонент. Большинство исследованных амилаз проявляет активность в слабокислой и нейтральной среде, в частности, производимая в крупном масштабе бактериальная α-амилаза из культуры В. subtilis имеет оптимум при рН около 6 (небольшие вариации в зависимости от штамма продуцента). Известны продуценты кислой α-амилазы, относящиеся к p.p. Bacillus, Clostridium. Кислые амилазы имеют оптимум при рН 2-4. Некоторые штаммы В. licheniformis синтезируют фермент, активный в щелочной зоне, при рН 9,5. Амилазы микроскопических грибов имеют оптимум при рН 4-5.

Оптимальная температура для действия α-амилазы мезофильных штаммов микроорганизмов обычно не превышает 70° С. Амилазы грибов имеют оптимум при 45-60° С. Термофильные бактерии могут синтезировать фермент с оптимумом 85-91° С. Такие ферменты особенно ценятся в промышленном биокатализе.

Большое практическое значение имеет влияние температуры и рН на стабильность амилаз. Быстрое разрушение зерновой α-амилазы при рН 3,3—4,0, например, дает возможность выпекать ржаной хлеб из муки, которая содержит избыток α-амилазы, при низких значениях рН, чтобы предотвратить излишнее декстринирование крахмала и образование клейких веществ в мякише хлеба.

Говоря о термостабильности α-амилаз различного происхождения, можно расположить их в следующем ряду по мере снижения устойчивости к нагреванию: бактериальные амилазы — зерновые амилазы — грибные амилазы.

α-Амилаза принадлежит к числу ферментов с достаточно высокой термостабильностью. Мезофильные бактерии продуцируют фермент, стабильный при температуре до 80°С, чаще не выше 70°С. Амилаза термофилов может обладать поразительной стабильностью. Так α-амилаза В. licteniformis, выпускаемая в виде коммерческого препарата Термамил, в присутствии 1 мМ СаС12 и 31,5% крахмала не теряет активности при 90° С, а при 100°С время полуинактавации составляет более 3 ч.

Амилазы кальций-независимые (так называемые «истинные»), как правило, менее термостабильны, чем кальций-зависимые.

Последними работами в области изучения амилаз показано, что в семенах растений присутствуют два типа α-амилазы: α-амилаза созревания и α-амилаза прорастания.

В созревающем зерне синтезируется α-амилаза созревания, которая затем переходит в латентную форму, локализуясь на мембранах алейронового слоя. Первый этап гидролиза крахмала при прорастании осуществляется этой α-амилазой. И только на следующем этапе в работу включается вновь синтезируемый фермент — α-амилаза прорастания. Ее синтез в клетках зародыша и алейронового слоя начинается при влажности зерна выше 28%. Две формы α-амилазы семян злаков различаются по термостабильности: α-амилаза созревания при 70°С теряет 50% своей активности, тогда как α-амилаза прорастания при этой температуре только незначительно снижает свою активность.

Мощным механизмом регуляции скорости расщепления крахмальных гранул является система белковых ингибиторов амилаз, широко представленных в растениях. Ингибиторы белковой природы избирательно взаимодействуют с амилазами и образуют неактивные комплексы «амилаза—ингибитор». Высокой активностью обладают ингибиторы амилаз картофельного сока. Из зерна пшеницы выделен ингибитор с двумя активными центрами (двухцентровой). Один активный центр имеет сродство к протеазам и способен блокировать их действие. Другой активный центр имеет сродство к амилазам. Таким образом, один ингибитор белковой природы способен блокировать работу как протеаз, так и амилаз. В образующемся надмолекулярном комплексе ингибитор выполняет своеобразную роль связывающего звена, подавляя активность ферментов разного механизма действия.

Совершенствование технологии микробных α-амилаз идет по двум основным направлениям: создания препаратов высокой термостабильности для гидролиза клейстеризованного крахмала и препаратов, пригодных для гидролиза сырого, неклейстеризованного крахмала. Второй путь обещает в будущем Переход к низкотемпературному расщеплению крахмала, что существенно сократит энергозатраты и упростит аппаратурное оформление процесса гидролиза.

 

Ссылка на основную публикацию