Целлюлолитические ферменты, гидролиз целлюлозы

Целлюлоза

Целлюлоза является одним из наиболее трудно гидролизуемых природных полимеров. В организме высших животных и человека не синтезируются ферменты, гидролизующие целлюлозу. Биодеградацию целлюлозы осуществляют ферменты микроорганизмов. Микрофлора толстого кишечника человека ферментирует целлюлозу овощей и фруктов полностью. Более грубая целлюлоза, например, входящая в препараты пищевых волокон, расщепляется на 0–70%.

В гидролизе целлюлозы участвуют три основных вида ферментов

В гидролизе целлюлозы участвуют три основных вида ферментов. Эндо-β-1,4-глюканазы (КФ3.2.1.4) катализируют неупорядоченное расщепление целлюлозных молекул на крупные фрагменты. При действии экзо-β-1,4-глюканазы, или целлюлобиогидролазы (К.Ф.3.2.1.91) от нередуцирующего конца целлюлозных молекул или их ферментов отщепляется целлобиоза. Целлобиозы, или β-глюкозидазы (К.Ф.3.2.1.21) катализируют гидролиз целлобиозы и, с меньшей скоростью, небольших целлоолигосахаридов, с образованием глюкозы. Некоторые микроорганизмы синтезирую экзо-β-1,4-глюкозидазу (КФ3.2.1.74), под действием которой от нередуцирующего конца целлюлозных субстратов отщепляется глюкоза.

Индивидуальные эндо- и экзоглюканазы способны расщеплять нативную целлюлозу, однако в природе этот процесс происходит обычно под действием комплекса ферментов.

Целлюлазные комплексы микроорганизмов и высших базидиальных грибов включают до 20 ферментных белков, среди которых, как правило есть и эндо-, и экзо-ферменты.

Гидролиз целлюлозы, Нативная целлюлоза

Гидролиз целлюлозы ассоциированными бактериальными целлюлазами имеет место в рубце жвачных животных. В рубцовой жидкости лишь около 5% целлюлаз находится в свободном состоянии, остальная часть представлена ассоциатами. В гидролизе целлюлозы участвуют различные бактерии, населяющие рубец. За 6-8 ч пребывания в этом отделе желудка целлюлоза расщепляется на 40-50%.

Полнота гидролиза целлюлозы зависит от ряда факторов, в числе которых следующие: степень кристалличности субстрата, величина его удельной поверхности, состав ферментативного комплекса, используе­мого для гидролиза, и свойства его компонентов.

Нативная целлюлоза имеет очень прочную структуру и трудно гидролизуется. При исследовании гидролиза образцов целлюлозы различной степени кристалличности найдена обратная зависимость скорости гидролиза от процента кристалличности. Для увеличения доступности целлюлозы действию ферментов ее подвергают измельчению. При этом снижается размер частиц, увеличивается удельная поверхность субстрата и доля аморфной части. При сильном механическом воздействии может быть даже снижена степень полимеризации целлюлозы. Скорость гидролиза целлюлозы прямо пропорциональна величине удельной поверхности, она увеличивается по мере снижения размера частиц и степени полимеризации целлюлозы.

Микроорганизмы синтезируют целлюлазные комплексы, различающиеся по способности гидролизовать целлюлозу с высокой степенью кристалличности. Так называемые «неполноценные» комплексы хорошо гидролизуют аморфную целлюлозу, а в кристаллической целлюлозе расщепляют лишь ее аморфную фракцию (2-5%). Резкое снижение активности «неполноценных» комплексов по отношению к «полноценным» наблюдается при возрастании степени кристалличности субстрата до 60-70%.

Полноценные целлюлазные комплексы обязательно содержат эндоглюканазы, способные прочно сорбироваться на субстрате.

Чем выше коэффициент распределения, тем выше реальная концентрация фермента на поверхности субстрата и скорость гидролиза. Наблюдается прямая пропорциональная зависимость скорости гидролиза кристаллического субстрата от количества эндоглюканазы, сорбированной на его поверхности

Синергизм действия может наблюдаться в различных комбинациях эндо- и экзо-ферментов (эндо-эндо, эндо-экзо, экзо-экзо), но в любом случае одна из целлюлаз значительно отличается от другой по способности адсорбироваться на субстрате. Ферменты, близкие по сорбционной способности, при соединении не проявляют синергизма. Синергический эффект целлюлаз значителен: степень расщепления субстрата увеличивается в 2,5-2,8 раза.

Для гидролиза целлюлозы используются комплексные ферментные препараты, выделяемые из культур микроскопических грибов и актиномицетов и обладающие эндоглюканазной, целлобиогидролазной и целлобиазной активностью. Отдельные компоненты целлюлазных комплексов грибов и актиномицетов проявляют наибольшую активность при рН от 3,7 до 5,5, а комплексы в целом – при рН 4,5-5,5. Оптимальная температура действия отдельных компонентов – от 45 до 80°С, комплексов – 50-60° С. Некоторые высшие базидиомицеты синтезируют целлюлазы с оптимумом при рН З.

Многие целлюлазы являются углеводсодержащими белками, углеводная часть может составлять до 90% молекулярной массы. Углеводная часть выполняет якорную функцию, способствуя сорбции фермента на субстрате. Сорбция по сродству необходима, поскольку в рН-зоне активности целлюлазы имеет незначительный заряд (рН-оптимумы близки к ИЭТ). Возможно, углеводная часть обеспечивает скольжение фермента в фибриллярных структурах целлюлозы. Это существенно, поскольку целлюлазы осуществляют сотни и тысячи каталитических актов, не покидая поверхности одной целлюлозной молекулы.

Углеводная часть целлюлаз защищает белок от действия денатурирующих агентов и от протеолиза.

Конверсия целлюлозы в природных биоценозах сопряжена с деструкцией гемицеллюлозы и лигнина. При культивировании грибов на древесных субстратах в первую очередь разлагается гемицеллюлоза, после удаления ксилана увеличивается скорость гидролиза целлюлозы. Ксилазы и целлюлазы проявляют синергизм, что объясняется последовательностью их действия при гидролизе смешанного субстрата, где целлюлоза экранирована гемицеллюлозой.

Применение целлюлолитических ферментов представляет большой интерес, т.к. ферментативный гидролиз целлюлозосодержащих материалов (древесина, торф, сельскохозяйственные и городские отходы) может обеспечить получение различных биотехнологических продуктов (глюкозы, этанола, ацетона, микробной биомассы).

 

Ссылка на основную публикацию